The reaction of trimethylaluminium with 1,2 -dihydroxymethylbenzene

S. Pasynkiewicz and W. Ziemkowska

Warsaw Technical University, Faculty of Chemistry, Koszykowa 75, 00-662 Warszawa (Poland)
(Received June 18, 1991)

Abstract

The reaction of 1,2 -dihydroxymethylbenzene with trimethylaluminium carried out at a $2: 3$ molar ratio yields the complex $\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}\right]_{2} \mathrm{Al}_{3} \mathrm{Me}_{5}(\mathrm{~A})$ possessing one five- and two four-coordinated aluminium atoms.

Trialkylaluminium compounds react easily with monodentate electron donors and usually form simple compounds containing flat 4- or 6-membered rings $\left(\mathrm{Al}_{2} \mathrm{X}_{2}\right.$ or $\mathrm{Al}_{3} \mathrm{X}_{3}, \mathrm{X}=\mathrm{O}, \mathrm{N}, \mathrm{S}$) in the molecule [1]. However when multidentate ligands, for example trisilanol [2], binuclear iridium complex $\mathrm{Ir}_{2}(\mathrm{CNR})_{4}(\mathrm{dmpm})(\mathrm{R}=2,6-$ $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, dmpm $=\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{PMe}_{2}$) [3], bidentate ligands bis(diphenylphosphinoyl)methane [4] and bis(diphenylthiophosphinoyl)methane [5], 1,4,8,11-tetraazocyclotetradecane [6]) are used as the electron donors, complicated aggregates are obtained.

Recently we have reported the synthesis and structure of trimethylaluminium complexes with a multidentate carbosiloxane type ligand [7]. We now turn our attention to the reactions of organoaluminium compounds with diols as bidentate ligands. Here we report the synthesis and structure of $\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}\right]_{2} \mathrm{Al}_{3} \mathrm{Me}_{5}$ isolated from the reaction of trimethylaluminium with 1,2-dihydroxymethylbenzene.

The reaction was carried out according to eq. 1 . Two moles of methane per mole of diol are liberated when the reaction is carried out at a molar ratio of diol : $\mathrm{AlMe}_{3}=2: 3$. A small amount of white amorphous solid precipitates from the

$$
\begin{align*}
& \text { CH2 }-3 \mathrm{AlMe}_{3} \xrightarrow[\mathrm{Et}_{2} \mathrm{O}]{-76 \mathrm{CH}_{2} \mathrm{C}} \\
& {\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}\right]_{2} \mathrm{Al}_{3} \mathrm{Me}_{5}+4 \mathrm{MeH}} \tag{1}
\end{align*}
$$

(A)

Fig. I. Structure of the complex $\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}\right]_{2} \mathrm{Al}_{3} \mathrm{R}_{5}$.
reaction mixture. It was defined as a mixture of polymeric compounds, based on elemental analysis and insolubility in organic solvents. A small amount of AlMe_{3} was also detected in the reaction mixture. The main reaction product \mathbf{A} was isolated as colourless crystals. Its structure (Fig. 1) is based on ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{27} \mathrm{Al}$ NMR spectra and on cryoscopic molecular weight determination.

Compound \mathbf{A} possesses a central, five-coordinated aluminium atom bonded to four oxygen atoms and to one methyl group R , and two four-coordinated aluminium atoms, each bonded to two oxygen atoms and to two methyl groups R^{\prime} and $\mathrm{R}^{\prime \prime}$.

The ${ }^{1} H$ NMR spectrum of compound \mathbf{A} (Fig. 2) has two multiplets of aromatic protons, a degenerate doublet of doublets (type AB) assigned to CH_{2} groups and three singlets at $-0.38,-0.48$ and -1.36 ppm (integration ratio $2: 2: 1$ respec-

Fig. 2. ${ }^{1} \mathrm{H}$ NMR spectra of: (a) 1.2-dihydroxymethylbenzene in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ solution. standard $\mathrm{CD}_{3} \mathrm{COCD}_{2} \mathrm{H}=2.04 \mathrm{ppm}$; (b) product A , in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution, standard $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}=7.15 \mathrm{ppm}$.

Fig. 3. ${ }^{13} \mathrm{C}$ NMR spectra of: (a) 1,2-dihydroxymethylbenzene in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ solution, standard ${ }^{13} \mathrm{CD}_{3} \mathrm{COCD}_{3}=29.80 \mathrm{ppm}$; (b) product A , solv. $\mathrm{C}_{6} \mathrm{D}_{6}$ standard ${ }^{13} \mathrm{C}_{6} \mathrm{D}_{6}=128.00$ ppm.
tively) assigned to methyl groups. ${ }^{1} \mathrm{H}$ NMR spectrum shows that compound \mathbf{A} possesses 8 aromatic protons, $4 \mathrm{CH}_{2}$ groups and 5 methyl groups $\mathrm{Al}-\mathrm{CH}_{3}$, one of them (singlet of -1.36 ppm) being very different from the others.

The ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 3) gives evidence that all CH_{2} groups are equal and that compound A has at least 2 kinds of methyl group $\mathrm{Al}-\mathrm{CH}_{3}$. The spectrum comprises 3 signals of aromatic carbons, one signal of $-\mathrm{CH}_{2}-$ groups and two low intensity, wide signals of methyl groups $\mathrm{Al}-\mathrm{CH}_{3}$.
${ }^{27} \mathrm{Al}$ NMR studies show that complex \mathbf{A} contains four- and five-coordinated aluminium atoms. Two wide signals in the spectrum at 160.60 ppm and 73.90 ppm were assigned to four- and five-coordinated aluminium atoms respectively.

Cryometric measurements carried out in benzene show the association degree of $\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}\right]_{2} \mathrm{Al}_{3} \mathrm{Me}_{5}$ as $n=1.05$.

Experimental

A solution of $0.81 \mathrm{~g}(11.3 \mathrm{mmol})$ of AlMe_{3} in $20 \mathrm{~cm}^{3}$ of diethylether was added dropwise over 1 h into a cooled $\left(-76^{\circ} \mathrm{C}\right)$ solution of $1.03 \mathrm{~g}(7.5 \mathrm{mmol})$ of 1,2 -dihydroxymethylbenzene in $20 \mathrm{~cm}^{3}$ of diethylether. The reaction mixture was warmed to room temperature over the next 2 h . Evolution of methane was observed during the reaction. A white, amorphous solid (0.25 g), insoluble in benzene and toluene precipitated after 24 h . Elemental analysis of the solid: Al, 14.12%; hydrolyzable methyl groups, $-9.04 \mathrm{wt} . \%$. The solvent was partially evaporated from the filtrate and colourless crystals were obtained on cooling the remaining solution to $-30^{\circ} \mathrm{C}$. Elemental analysis: found: Al, 18.37%; hydrolyz-
able methyl groups, $-18.00 \mathrm{wt} . \%$; $\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}\right]_{2} \mathrm{Al}_{3} \mathrm{Me}_{5}$ calc.: $\mathrm{Al}, 18.93 \% ; \mathrm{Me}$, $17.5 \mathrm{wt} . \%$.

References

1 R. Kumar, M.L. Sierra, V. Srini, J. de Mel and J.P. Oliver, Organometallics, 9 (1990) 484; V. Srini, J. de Mel, R. Kumar and J.P. Oliver, Organometallics, 9 (1990) 1305; M.P.R. van Vliet, G. van Koten, M.S. de Keiper and K. Vrieze, Organometallics, 6 (1987) 1652; M.D. Healy, D.A. Wierda and A.R. Barron, Organometallics, 7 (1988) 2543; V. Srini, J. de Mel and J.P. Oliver, Organometallics, 8 (1989) 827; J.F. Janik, E.N. Duesler, W.F. McNamara, M. Westerhausen and R.T. Paine, Organometallics, 8 (1989) 506; A.P. Shreve, R. Mulhaupt, W. Fultz, J. Calabrese, W. Robins and S.D. Ittel, Organometallics, 7 (1988) 409.
2 F.J. Feher, T.A. Budzichowski and K.J. Weller, J. Am. Chem. Soc., 111 (1989) 7288.
3 J. Wu, P.E. Fanwick and C.P. Kubiak, J. Am. Chem. Soc., 111 (1989) 7812.
4 G.H. Robinson, B. Lee, W.T. Pennington and S.A. Sangokoya, J. Am. Chem. Soc., 110 (1988) 6260.
5 G.H. Robinson, M.F. Self, W.T. Pennington and S.A. Sangokoya, Organometallics, 7 (1988) 2424.
6 G.H. Robinson, A.D. Rae, C.F. Campana and S.K. Byram, Organometallics, 6 (1987) 1227.
7 S. Pasynkiewicz and W. Ziemkowska, J. Organomet. Chem., 397 (1990) 269.

